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Abstract. We describe null spinning strings with U{1) gauge symmetry in terms of a
phase-space Lagrangian and then quantize it in the light-cone gauge. With normal ordering
we come to the conclusion that the critical dimension is D =2.

Strings with vanishing tension were first introduced by Schild [1]. He gave them the
name ‘null strings’. Recent research in the very high energy behaviour of string
amplitudes [2-5] has triggered wide interest in the study of tensionless strings. Another
reason why physicists are interested in tensionless strings is to simplify the theory by
studying its zero-tension limit as an alternative approach to understanding the beauty
and subtleties of string theory.

In constructing null string actions, the first difficulty is how to take the tension T
to zero in a theory whose action is proportional to T. Several actions for tensionless
strings have been introduced [6-10); the significant common feature of these actions
is the presence of auxiliary fields which are constrained in one way or another,

The quantization of null bosonic strings was investigated by Lizzi er al [11] who
claimed that there are no critical dimensions for null strings, that the mass spectrum
is continuous and the corresponding wavefunctions are plane waves. The difficulty
that appeared in the above approach is that it is not clear why there are no critical
dimensions. Gamboa et af [12, 13] showed that whether critical dimensions appear or
not depends only on the ordering prescription which may lead to very different results,
They considered the issue of the consistent quantization of null string theory with both
Weyl operator ordering and normal operator ordering. The results is that with Weyl
ordering the mass spectrum remains continuous and the critical dimensions do not
exist, i.e. consistent with Lizzi’s results, while with normal ordering the quantization
is reasonable only in the critical dimensions: D = 26 for bosonic strings and D =10
for spinning strings.

In this paper we consider the issue of the consistent quantization of null spinning
strings with U(1) internal symmetry (N =2). We describe its action by means of a
phase-space Lagrangian [8, 14, 15] where the limit T—0 can be taken in a consistent
way. At a classical level, we consider its constraints and find that these constraints
form a closed algebra which is analogous to the super-Virasoro algebra, Finally, with
normal ordering, we quantize the N =2 null spinning string in the light-cone gauge.
Qur calculation gives the result of critical dimension D=2,
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We first briefly review the usual N =2 spinning string with non-vanishing tension
T in order to establish notation and the usual constraint algebra. The action for N =2
tensile spinning strings is

T = LT ome e oom
§=-3 J. d*av/—glg™"0mX 8, X, — 1,y " + A Y™,

F (B X" =3l WYY "X F (B X = 2 X ) XY ™Y, ], (1)

It is obvious that we cannot pursue the null string theory simply by letting the
tension T in (1) approach zero. Note that there is no kinetic term for the U(1) gauge
field A,, world-sheet metric g.. and gravitinos x,, ¥m.. Therefore following the
conventional procedure for the usual string with non-vanishing T the equations of
motion of these fields imply vanishing of the following currents:

T=-——2-25 _y (2a)
V=g T 8gmn

Jm=—\/_—2gT%= (2b)

fm=—:/—___2g—Tﬁ—5_S;=0 (2¢)

vm=-$ fiw. 2d)

The Weyl invariance in two dimensions always allows us to choose a conformally
flat metric. Besides, the supersymmetry and super-conformal symmetry can be used
to set all the components of y,, and x,, equal to zero [16]. In this gauge, we have

Tonn = 0mX *3X,, — 310 9:X 20X, — 10, Y0 0 mip™ + 0" ¥ 3 b, (30)

T =0 Yy 00X, (3b)
T =0,X, 7" Vth* (3¢)
Vo = 4 Youlhe (3d)
and the Lagrangian obtained from (1) reduces in this gauge to
L= "%T(”?mnamxﬂani#_ilf;“’)’mgm'f’y)- (4)
The canonical momenta are
alL T -
P*L:aX“:EX“ (5a}
~ el T .
P=—00=-X, (5b)
ax* 2
aL iT
m=@:=*-2—¢v: (6a)
+ oL iT

(6b)

Wl-l:;i"'-_,u:? 14
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Substituting equations (5) and (6) in equations (3), we obtain the constraints

H =P.P*+ T X" X, —iy ¥ 3,4*)=0 (7a)
Hy=P*X,+P*X ! +1iTyl5 4" =0 (7b)
Sa=Pyb—iT(¥°¥y*).X, =0 (7¢)
8o = Pt —3T(6™ ") X = 0 (7d)
U=y yp*=0 (Te)

where the bosonic constraints generate reparametrization transformations and (1)
gauge transformations, while the fermionic ones generate supersymmetry trans-
formations.

The phasse-space Lagrangian [14] for the N = 2 spinning string with non-vanishing
tension is

L=X*P,+ X*P,+gim) +dm,+ A, H + A H + £S5, + 5.6, + wU. (8)

The above structure follows from the fact that the string Hamiltonian is a pure constraint
[13]. The bosonic Lagrange multipliers A, and A play the role of the independent
components of the metric g,.,. Similarly, the fermionic £, and £, replace the gravitino
degrees of freedom. w is the U({1} gauge degree of freedom.

The equations of motion for the Lagrange multipliers and for the conjugate momenta
can be easily obtained from (8). Inserting them back into (8) again we obtain (1). Thus
equations (1} and (8) are equivalent. However, (8) does not contain the tension T
explicitly. Thus it allows us to consider the limit case of T-0 simply by means of
setting T in the constraints (7) to zero. Therefore (8) serves as the appropriate
Lagrangian for the null spinning string.

Setting the string tension equal to zero, the constraints (7) become

H, =P*P =0
H||=P#XL+IS“)2L‘—'O

S.=P.yh=0 )
S, =Pyth=
U=¢lyt =0,

The relationships (6) between fermionic coordinates and momenta no longer exist.
Instead, we have the constraints

TE=ait=0 (10}

which cannot be eliminated with the Dirac formalism of constrained systems [17].
Thus it is easy to see that the constraints (9) do not form a closed algebra. This difficulty
for the N =1 case was circumvented in [13] by means of a singular reparametrization
of the fields in the Lagrangian, so that at the end the result was a closed constraint
algebra without second-class constraints and the fermionic variables evolute trivially.
In our case, closure of constraint algebra can be enforced with the following elegent
trick introduced by Barcelos-Neto et al [15].



3430 Chao-zheng Zha and Yu Cai
Since the constraints 7% = 7} * =0 cannot be eliminated with the Dirac formalism,
we incorporate them in the relations {9) in the following way:
= PP L tam, Yyt by ot
Hu =P*X, +P*X +cntyl + dch e

S, =Path+e(yal) X (11)
So= B +f ('YX ™
U=gp*

where a, b, ¢, d, e and f are parameters to be determined. Equations (9) are recovered
by setting 7% = 7.* =0, of course.
With fundamental brackets

{X*(0), P*(6")}, = n**5(0 — o)
{X*(0), P*(¢' )}, =n*"(8(c~0’)
{¢a(0), mp(a )}, = n""8,58(0 —0’)
{¥2 (o), w5 (o)}, = 7" 8,58(0 — 0)

it is straightforward to show that the algebra indeed closes for the following choice
of parameters:

(12)

a=b=e=f=0 ce=d=1. (13)
Thus the null constraints are

H, =P'p, : {14a)

Hy=P*X; 1 G X Lt XM e (14b)

S.= P4 (14¢)

S.=Pyi* (14d)

U=gp* (14e)

Therefore, the phase-space Lagrangian of the N =2 null spinning string is still
given by (3); however, constraints are given by equations (14). In complete analogy
to the tensile case, it is appropriate to choose the values of multipliers A, A, &,, &,
and  in order to fix the null gauge, in which the metric g,.. is conformally flat and
gravitinos y,. and ¥, are equal to zero. The Lagrangian that we arrive at in the null

TELISAS N Saase Sav ¥4 o LIRS axid

gauge is:
L=X"X, +iphg" +id g (15)
and the constraints in this gauge are:
H =X"X, {16a)
Hy=XX L+ XX L +igng™ iy {16b)
S, = X0t (16¢)
5. =Xy (16d)

U=yiy*. (16e)
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The canonical quantization of the Lagrangian (15) is straightforward after fixing
the light-cone gauge in order to retain the physical degrees of freedom. In the light-cone
gauge (X" =(1/V2m)p*r, X (1/V2m) T2, ¢2 =0, (¢%)* =0), the most general sol-
ution to the equations of motion does not involve any oscillators:

X*{r,o)=P*(o)r+ YH{o)

_ _ _ (17
X¥(r,0)=P*(o)r+ Y*(o)
h(r, o) = yilo)
(18)
Yot )=y H(o)
and the constraints (16) become
(p*p +p'p )=z P-P (19a)
(P Y '+ Y ) =Ea [B- Y +B- Y +i(d" ¥+ &)] (19b)
1 Lo
d’;;=?\/21r Py, (19¢)
. 1 r— = o~y PR
(wa) E:‘/Zﬂ'i’ W, (194d)
gTg=0 (19¢)
where ii-é=u'v', I=1,2,..., D—~2. The crucial point is that, unlike the N =1 case

[13], the constraints (19) are unsolvable. In order to completely solve the constraints

{10} wa note that nn I(lﬁﬂfl(‘ tarm Fnr the TI{1) nl)nnn fiald A anmaare in tha ariginal
\1);, Weo NOW widge U KRIESUIC Wil MIC iy UEL Tl Fuy appPlals 1 it OTigiha:

Lagrangian (1). This fact leads to the conﬁnement of the U(1) charge. Therefore, we
may introduce an ansatz that the field X *is invartant under U(1) gauge transformations,
i.e. X*=X* and then P*= P*. With help of this ansatz, we get the solution of the
constraints {19):

Pr=7 27 2 (20a)
P
-1 27 (s oo 1oy w0 oy
Y =—1;_',_—' PY+‘2‘1;’J «p+5¢¢ (206)
V2o o -
V=" Py, (20¢)
P
Fy— 2m o o '
(ra) o+ Db (204)
g =0. (20¢)
W e nrand tn tha cananiral nmmantizatinn and nactulate the fallnwinag
NOW We llld)’ Procesa 10 il Canonida: QuaniiZauon and posiudiait Wit SuOWINg

fundamental brackets for the independent degrees of freedom,
(Y'(o), P/ (0")]=i8"8(a~0") (21a)
{gila), g3’ (o)} = 8,58 "8(c ~ o). (21b)
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It is convenient to expand the independent (transverse) degrees of freedom in
Fourier series. In terms of modes, the fundamental brackets (21) become

Ly, p"i=—i (22a)
[yirr) P‘:] = i3”5m+n,o (22b)
{Ci.m’ dé,n} = ausaﬁam+n,0- (220)

For light-cone quantization, the quantum consistency amounts to requiring the
Lorentz algebra to close. The generators of the Lorentz group are

M* = J‘ do: [P*(a) Y7 (a)~ P*(o) Y* (o) + iy (o )polo) — ¢ (o)h(o D]

= E [ptmyrl; —pimy‘t; + i(d:—mcz.m - d;.—mcﬁ,m)]: (23)
where the symbol : : denotes normal ordering. It is important to check that the operators
in (23) really generate the Lorentz algebra. Most of the commutators can be checked

straightforwardly and give the correct result. However, the commutator [M’'~, M’ ]
must be treated with care.

i 1 1

M!_-_F:( 2 _+_3H - ’[1 -n T T+ n in): 24

PoYyo P+"§0npy P+§py (24)

where we have taken the following redefinition for constraints:
Ya=iY miph Ly +3 ¥ mildl o, Cl o+ CLndl ) (25a)
. ro

Pu= P Pa=3 LI PomPrrm (258)
¢a,a=p+C;,u=z:p;C2—a—m: (25(‘)
Goa =P Goa=L:Pmlnam: (25d)
Tr!:E: di,mczlx,n—m:- (258)

The algebra formed by these constraints reads as
(Pmsp.]=0 [¥m, pul=(R=1) P
[be.as Pr)=[buas Pa]=[Ton, Pa] =0
Lms ¥al=(n=m)ypmen+ A()Bmsno
as $aal=(a—n/2)¢0asn [Vas Baal = (@~ 1/2) B0 gt (26)
{Gaas B} = {Doar Do} =0 {Gaas Pos} =28.0Purs
[baas Tul= donsa [faar Ta) = —Ganra
[Tn, T,)=mdb,1n0 oy Tal= T

where d = D —2 and D is the dimension of spacetime, A(m)= A®(m)+ AF(m) is the
ordering-prescription-dependent central term.
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Under normal ordering, the physical Hilbert space is defined as being created out
of a vacuum |0) annihilated by y!, p;. a,bf,,,, and ¢!, for n positive. Thus we have

yal0)=pal0) =l 0y = ¢ 5|0) =0 n>0 (27)
as well as
¥o|0) = a|0) (28)

where a is the normal ordering constant.
Using the well known trick in computing anomalies {16], we obtain the following
result:
AB(m)=td(m*—m)

FR/ \ s k) -~

‘(m)y=3d(m>+2m)

A"N(m) =¢d(m®—m)

where A® is the bosonic part of A, and superscripts R and N represent the R {(Raymond)
sector and N-S (Neveu-Schwarz) sectors respectively [13]. Then,

AV =3d (m3+§) (29a)
ANN=3d (m®—m) (29b)
ANR- gR-N_1 (m3--':-). (29¢)

After a rather redious computation, we obtain for the Lorentz algebra

A(m) 2 )

m*

(M~ M= o L0 mp,.,—p_mpm)(

PR T 2. T4 R WSy b 7. S T SRy | P Ui, p 1y
lﬂl.lb ll'lbﬂl'l]llg mc CEeniral 1€rni (£¥) into \wu), WE ninany ooiai

1
D=d+2=2 and the values of y;: dgr=aun=Arn=Anpr=0.
On the basis of the previous work, we come to the conclusion that the N =2
extention of the null spinning string gives a highly symmetrical two-dimensional theory
and an interesting generalization of the null super-Virasoro algebra. Unfortunately, it
seems difficult to give the usual physical interpretation for this theory since the critical
dimension is I =2 and there are not transverse excitations of strings in this dimension.
Maybe it enters physics in some other unknown way. On generalizing our construction
of N =2 null spinning strings to N > 2 cases, by means of adding more fermionic
constraints, it is amusing to note the the critical dimension corresponding to the N =4
case is D= -2, again in surprising agreement with the usual string theory, and this
seems to have no sensible interpretation.

Acknowledgment

The authors would like to thank Dr Jian-Hui Dai for helpful discussions.



3434 Chao-zheng Zha and Yu Cai
References

[1] Schild A 1977 Phys. Rev. D 16 1722
[2] Gross D J 1988 Phys. Rev. Lett. 60 1229
Gross D J and Mende P 1987 Phys. Lett. 197B 129
{3} Amati D, Ciafaloni M and Veneziano G 1987 Phys. Lers. 197B 81; 1988 far. [ Mod Phps. A 3 1615;
1989 Phys. Leit. 216B 41
{4] Attick JJ and Witten E 1988 Nucl. Phys. B 310 291
[5] Klebanov | and Susskind L 1988 Nucl. Phys. B 309 175
{6] Balachandran A P, Lizzi F and Sparano G 1986 Nucl. Phys. B 265 608
[7] Balachandran A P, Lizzi F and Sparano G 1986 Nucl. Phys. B 277 359
[8] Hwang S and Marnelius R 1986 Nucl Phys, B 272 389
[9] Amorim R and Barcelos-Neto J 1988 Z. Phys. C 38 643
[10] Karlhede A and Lindstrom U 1986 Class. Quantum. Grav. 3 L73
[11] Lizzi F, Rai B, Sparanc G and Srivastava A 1986 Phys. Lett. 182B 326
[12] Gamboa J, Ramirez C and Ruiz-Altaba M 1989 Phys. Leq. 225B 335
[13] Gamboa J, Ramirez C and Ruiz-Altaba M 1989 Preprint CERN-TH 5346/89
[14] Barcelos-Neto J and Ruiz-Altaba M 1989 Phys. Lewt. 228B 193
[15] Barcelos-Neto J, Ramirez C and Ruiz-Altaba M 1989 Preprint CERN-TH 5347/89
[16] Green M B, Schwarz J H and Witten E 1987 Superstring Theory Cambridge: Cambridge University Press)
[17] Dirac P A M 1950 Can. J. Math. 2 129; 1965 Lectures on Quantum Mechanics (New York: Academic)



