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Quantization of null spinning strings with 
U(l) gauge symmetry 
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Republic of China 
ZCCAST (World Laboratory), PO Box 8730 Beijing 100080, People's Republic of China 
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Abstract. We describe null spinning strings with U(1) gauge symmetry in terms of a 
phase-space Lagrangian and then quantize it in the light-cane gauge. With normal ordering 
we come to the conclusion that the critical dimension is D = 2 .  

Strings with vanishing tension were first introduced by Schild [I] .  He gave them the 
name 'null strings'. Recent research in the very high energy behaviour of string 
amplitudes [2-51 has triggered wide interest in the study of tensionless strings. Another 
reason why physicists are interested in tensionless strings is to simplify the theory by 
studying its zero-tension limit as an  alternative approach to understanding the beauty 
and subtleties of string theory. 

In constructing null string actions, the first difficulty is how to take the tension T 
to zero in a theory whose action is proportional to T. Several actions for tensionless 
strings have been introduced [6-lo]; the significant common feature of these actions 
is the presence of auxiliary fields which are constrained in one way or another. 

The quantization of null bosonic strings was investigated by Lizzi er al [ l l ]  who 
claimed that there are no  critical dimensions for null strings, that the mass spectrum 
is continuous and the corresponding wavefunctions are plane waves. The difficulty 
that appeared in the above approach is that it is not clear why there are no critical 
dimensions. Gamboa et a /  [12, 131 showed that whether critical dimensions appear or 
not depends only on the ordering prescription which may lead to very different results. 
They considered the issue of the consistent quantization of null string theory with both 
Weyl operator ordering and normal operator ordering. The results is that with Weyl 
ordering the mass spectrum remains continuous and the critical dimensions do not 
exist, i.e. consistent with Lizzi's results, while with normal ordering the quantization 
is reasonable only in the critical dimensions: D = 26 for bosonic strings and D = IO 
for spinning strings. 

In this paper we consider the issue o f  the consistent quantization of null spinning 
strings with U(1) internal symmetry ( N = 2 ) .  We describe its action by means of a 
phase-space Lagrangian [8, 14,151 where the limit T+O can be taken in a consistent 
way. At a classical level, we consider its constraints and find that these constraints 
form a closed algebra which is analogous to the super-Virasoro algebra. Finally, with 
normal ordering, we quantize the N = 2 null spinning string in the light-cone gauge. 
Our calculation gives the result of critical dimension D = 2. 
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We first briefly review the usual N = 2 spinning string with non-vanishing tension 
T in order to establish notation and the usual constraint algebra. The action for N = 2 
tensile spinning strings is 

S= -- d2~fi[gmna,XcanX, -i$,.ymzm$B+A,@ym$s 
2 

+(a,x" - b m + B ) $ + ~ " ~ m ~ ,  +(a,X@ -~Px~)~~Y"Y"+,J (1) 

'I 
It is obvious that we cannot pursue the null string theory simply by letting the 

tension T in ( I )  approach zero. Note that there is no kinetic term for the U( 1) gauge 
field A,,,, world-sheet metric g,. and gravitinos ,ym, 2,. Therefore following the 
conventional procedure for the usual string with non-vanishing T the equations of 
motion of these fields imply vanishing of the following currents: 

0 J =-- -= 
2 ss 

f i T  Sx, 

The Weyl invariance in two dimensions always allows us to choose a conformally 
flat metric. Besides, the supersymmetry and super-conformal symmetry can be used 
to set all the components of ,ym and 2, equal to zero [16].  In this gauge, we have 

T,. = a,X*a.x, -$lmnv k'akXwalzF - iq,,ynzm$" +iq,.@' ykzk+,, ( 3 0 )  

J ,  = &"rmr"~,xp ( 3 6 )  

J ,  = a.X,y"y,$@ ( 3 c )  

v, = @'Y,*, ( 3 d )  

and the Lagrangian obtained from (1) reduces in this gauge to 

L =  - ~ T ( ~ " " a , X + a , ~ ,  -i&py"'z,$,,). ( 4 )  

The canonical momenta are 

- dL T .  p, = - =-- x ax* 2 

d L  iT 
=*=-=-- a+ 2 +: 
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Substituting equations ( 5 )  and (6) in equations (3), we obtain the constraints 
- 

H,=P,P'+aT*(X"Z'_' I $ ~ Y  + 5- a,$')=o (7a)  

HII= prZ;+PrX:+fiT*:~,$'=O (76) 

(7c) 

~~==p,$~-fT($t 'yS) ,X:=O ( 7 d )  

U =  JI:++=o (7e) 

5 $6 X t - 0  %=P,$g-fT(y $ * -  

where the hosonic constraints generate reparametrization transformations and U( I )  
gauge transformations, while the fermionic ones generate supersymmetry trans- 
formations. 

The phasse-space Lagrangian [14] for the N = 2 spinning string with non-vanishing 
tension is 

L =  X.'P, + k'p,, + 4 : ~ :  t 4*rrF f A,H, + All  HI^ + F,S, t se&, +"U. (8) 

The above structure follows from the fact that the string Hamiltonian is a pure constraint 
[131. The bosonic Lagrange multipliers A, and All play the role of the independent 
components of the metric g,,,". Similarly, the fermionic cm and replace the gravitino 
degrees of freedom. w is the U( 1) gauge degree of freedom. 

The equations of motion for the Lagrange multipliers and for the conjugate momenta 
can be easily obtained from (8). Inserting them back into (8) again we obtain (1). Thus 
equations (1) and (8) are equivalent. However, (8) does not contain the tension T 
explicitly. Thus it allows us to consider the limit case of T+O simply by means of 
setting T in the constraints (7) to zero. Therefore (8) serves as the appropriate 
Lagrangian for the null spinning string. 

Setting the string tension equal to zero, the constraints (7) become 

H, = Prp+ = 0 

HII = P'X; + s*X: = 0 

S. = P& = 0 

s, = F*$:* = 0 

U =  *E$'= 0. 

(9) 
- 

The relationships (6) between fermionic coordinates and momenta no longer exist. 
Instead, we have the constraints 

T"T+*=o (10) 

which cannot be eliminated with the Dirac formalism of constrained systems [17]. 
Thus it is easy to see that the constraints (9) do not form a closed algebra. This difficulty 
for the N = 1 case was circumvented in [ 131 by means of a singular reparametrization 
of the fields in the Lagrangian, so that at the end the result was a closed constraint 
algebra without second-class constraints and the fermionic variables evolute trivially. 
In our case, closure of constraint algebra can he enforced with the following elegent 
trick introduced by Barcelos-Net0 et a/ [15]. 
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Since the constraints T: = T:@ = 0 cannot be eliminated with the Dirac formalism, 
we incorporate them in the relations (9) in the following way: 

H ,  = P’p, + a~ ,y ’$ ’ ’+  b$;’y’,r+* 

S. = P w $ : + e ( y 5 ~ z ) a X * ’  

s,, = i j & ’ + f ( T ’ y S ) a x “  

U = $:$* 

HI, = P+XL+ pFXL+ cn’$L+ d$z’rr+* 

where a, b, c, d, e and f are parameters to be determined. Equations (9) are recovered 
by setting n: = nip = 0, of course. 

With fundamental brackets 

{ X ’ ( U ) ,  P ” ( u ‘ ) } D =  ?y”8(u-u’) 

it is straightforward to show that the algebra indeed closes for the following choice 
of parameters: 

a = b = e =f= 0 c = d = l .  (13) 

Thus the null constraints are 

H, = P‘& 

U = *;$e. (14e) 

Therefore, the phase-space Lagrangian of the N = 2 null spinning string is still 
given by (8); however, constraints are given by equations (14). In complete analogy 
to the tensile case, it is appropriate to choose the values of multipliers A,, A l l ,  L, 8, 
and o in order to fix the null gauge, in which the metric g,, is conformally flat and 
D.”. orsuitinn- .I... “I v IW -.- e n n i l  _=__. !n mm --. -. T h e  - ~~- Lagrangian that we arrive at in the nul! 
gauge is: 

L =  X*.2++i+:$* +i$:$’ (15) 

nnrl G 
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It is convenient to expand the independent (transverse) degrees of freedom in 
Fourier series. In terms of modes, the fundamental brackets ( 2 1 )  become 

I%, P+I = -i ( 2 2 a )  

[ ~ ! , . , p ~ l = i 8 ~ ' 8 ~ + ~ , ~  ( 2 2 6 )  

{ C h m ,  dh. l=  S1'6ap8m+n,o. ( 2 2 c )  
For light-cone quantization, the quantum consistency amounts to requiring the 

Lorentz algebra to close. The generators of the Lorentz group are 

M'"= da :  [ P ( u ) Y " ( u ) -  P"(u)Y~(u)+i(~~~(u)~~(u)- $;"(u)$:(u))]: 

=X :[ptmyL - P ! ~ Y ~  +i (d&, ,CL - d L C & J l :  ( 2 3 )  

where the symbol : : denotes normal ordering. It is important to check that the operators 
in ( 2 3 )  really generate the Lorentz algebra. Most of the commutators can be checked 
straightforwardly and give the correct result. However, the commutator [MI- ,  M'-] 

m 

I 

where d = 0 - 2  and D is the dimension of spacetime, A(m) = A B ( m ) + A F ( m )  is the 
ordering-prescription-dependent central term. 
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Under normal ordering, the physical Hilbert space is defined as being created out 

Y:Io )=P: lo )=  @:.“lo)= &.blO)=O n > O  (27) 

of a vacuum 10) annihilated by y : ,  p i ,  +:,” and +:,’,,, for n positive. Thus we have 

as well as 

where a is the normal ordering constant. 

result: 
Using the well known trick in computing anomalies [16], we obtain the following 

A B ( m )  = d d ( m ’ -  m) 

A’.”imj = ~ j ( m ‘ + i m  j 

AF.N(m) =id (”  - m )  

where AB is the bosonic part of A,  and superscripts Rand N represent the R (Raymond) 
sector and N-S (Neveu-Schwarz) sectors respectively [ 131. Then, 

After a rather redious computation, we obtain for the Lorentz algebra 

.,.~~- ! ~ . . - I I ~ ~ - A L .  . . _ A . . , A  ..-. ,*n,: .... ,?A \  .... c --,,..- LA-:- .L^ -I: :”.. inus, insening me central term {LYI  Inw {JV,, wc  iiriarry vv~ai i i  LUC C I I L I M ~  UIIIICLISIVII  

D = d +2  = 2 and the values of yo:  aR.R = uN.N = 
On the basis of the previous work, we come to the conclusion that the N = 2 

extention of the null spinning string gives a highly symmetrical two-dimensional theory 
and an interesting generalization of the null super-Virasoro algebra. Unfortunately, it 
seems difficult to give the usual physical interpretation for this theory since the critical 
dimension is D = 2 and there are not transverse excitations of strings in this dimension. 
Maybe it enters physics in some other unknown way. On generalizing our construction 
of N = 2  null spinning strings to N > 2  cases, by means of adding more fermionic 
constraints, it is amusing to note the the critical dimension corresponding to the N = 4 
case is D = -2, again in surprising agreement with the usual string theory, and this 
seems to have no sensible interpretation. 

= nN.R = 0. 
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